Design of combinatorial protein libraries of optimal size.
نویسندگان
چکیده
In this article we introduce a computational procedure, OPTCOMB (Optimal Pattern of Tiling for COMBinatorial library design), for designing protein hybrid libraries that optimally balance library size with quality. The proposed procedure is directly applicable to oligonucleotide ligation-based protocols such as GeneReassembly, DHR, SISDC, and many more. Given a set of parental sequences and the size ranges of the parental sequence fragments, OPTCOMB determines the optimal junction points (i.e., crossover positions) and the fragment contributing parental sequences at each one of the junction points. By rationally selecting the junction points and the contributing parental sequences, the number of clashes (i.e., unfavorable interactions) in the library is systematically minimized with the aim of improving the overall library quality. Using OPTCOMB, hybrid libraries containing fragments from three different dihydrofolate reductase sequences (Escherichia coli, Bacillus subtilis, and Lactobacillus casei) are computationally designed. Notably, we find that there exists an optimal library size when both the number of clashes between the fragments composing the library and the average number of clashes per hybrid in the library are minimized. Results reveal that the best library designs typically involve complex tiling patterns of parental segments of unequal size hard to infer without relying on computational means.
منابع مشابه
Optimization of Combinatorial Mutagenesis
Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (e.g., stability, activity, immunogenicity). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that wil...
متن کاملOptimal protein library design using recombination or point mutations based on sequence-based scoring functions.
In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 ...
متن کاملAssessment of "drug-likeness" of a small library of natural products using chemoinformatics
Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...
متن کاملCombinatorial and computational approaches in structure-based drug design.
The increasing number of protein 3D structures and the success of structure-based approaches has led to the development of several experimental and theoretical techniques for the rational design of protein ligands. Combinatorial chemistry significantly speeds up the synthesis of potential new drug candidates. Diversity considerations, as well as the use of 3D structural information of the biolo...
متن کاملCombinatorial protein design.
Combinatorial protein libraries permit the examination of a wide range of sequences. Such methods are being used for denovo design and to investigate the determinants of protein folding. The exponentially large number of possible sequences, however, necessitates restrictions on the diversity of sequences in a combinatorial library. Recently, progress has been made in developing theoretical tool...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2005